Physics 513, Quantum Field Theory
 Homework 2

Due Tuesday, 16th September 2003

Jacob Lewis Bourjaily

1. a) Studying classical field theory, we derived the Euler-Lagrange equations of motion,

$$
\frac{\partial \mathcal{L}}{\partial \phi}-\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}=0
$$

It is trivial to show that a field which is described by the Lagrangian given has the following equation of motion:

$$
\begin{align*}
-m^{2} \phi-\frac{\partial V}{\partial \phi}-\partial_{\mu} \partial^{\mu} \phi & =0 \\
\Longrightarrow\left(\partial_{\mu} \partial^{\mu}+m^{2}\right) \phi & =-\frac{\partial V}{\partial \phi} \tag{1.1}
\end{align*}
$$

Which is precisely the Klein-Gordon equation for a field in a potential V.
b) The canonical momentum is,

$$
\begin{equation*}
\pi=\frac{\partial \mathcal{L}}{\partial\left(\partial_{0} \phi\right)}=\partial_{0} \phi \tag{1.2}
\end{equation*}
$$

Using π, we write the Hamiltonian for the field.

$$
\begin{align*}
H=\int d^{3} x \mathcal{H} & =\int d^{3} x\left(\pi \partial_{0} \phi-\mathcal{L}\right) \\
& =\int d^{3} x\left(\pi^{2}-1 / 2\left(\partial_{0} \phi\right)^{2}+1 / 2(\nabla \phi)^{2}+1 / 2 m^{2} \phi^{2}+V(\phi)\right) \\
& =\frac{1}{2} \int d^{3} x\left(\pi^{2}+(\nabla \phi)^{2}+m^{2} \phi^{2}+2 V(\phi)\right) \tag{1.3}
\end{align*}
$$

c) With a complex scalar field, the Lagrangian becomes

$$
\mathcal{L}=\partial_{\mu} \phi^{*} \partial^{\mu} \phi-m^{2} \phi^{*} \phi-V\left(\phi^{*} \phi\right)
$$

Following the same procedure as in part (a) above, we use the Euler-Lagrange equation to show that

$$
\begin{gather*}
-m^{2} \phi^{*} \phi-\phi^{*} \frac{\partial V}{\partial \phi}-\phi \frac{\partial V}{\partial \phi^{*}}-\partial_{\mu} \phi^{*} \partial^{\mu} \phi=0 \\
\Longrightarrow\left(\partial_{\mu} \partial^{\mu}+m^{2}\right) \phi^{*} \phi=-\phi^{*} \frac{\partial V}{\partial \phi}-\phi \frac{\partial V}{\partial \phi^{*}} \tag{1.4}
\end{gather*}
$$

It is relatively easy to show that canonical momenta of the field are

$$
\begin{aligned}
\pi & =\frac{\partial \mathcal{L}}{\partial\left(\partial_{0} \phi\right)}=\partial_{0} \phi^{*} \\
\pi^{*} & =\frac{\partial \mathcal{L}}{\partial\left(\partial_{0} \phi^{*}\right)}=\partial_{0} \phi
\end{aligned}
$$

Using this expression for π, we will proceed as above to compute the Hamiltonian.

$$
\begin{align*}
H=\int d^{3} x \mathcal{H} & =\int d^{3} x\left(\pi \partial_{0} \phi-\mathcal{L}\right) \\
& =\int d^{3} x\left(\pi^{*} \pi-1 / 2 \pi^{*} \pi+1 / 2 \nabla \phi^{*} \nabla \phi+1 / 2 m^{2} \phi^{*} \phi+V\left(\phi^{*} \phi\right)\right), \\
& =\frac{1}{2} \int d^{3} x\left(\pi^{*} \pi+\nabla \phi^{*} \nabla \phi+m^{2} \phi^{*} \phi+2 V\left(\phi^{*} \phi\right)\right) . \tag{1.5}
\end{align*}
$$

d) Let us derive the Noether current generated by a global phase rotation $\phi \rightarrow \phi^{\prime}=e^{i \alpha} \phi$. It is clear that $\mathcal{L}^{\prime}=\mathcal{L}$ because only modulus terms of ϕ appear in \mathcal{L}. We rewrite the global phase rotation to the first order as

$$
\begin{align*}
\phi \rightarrow \phi^{\prime}=e^{i \alpha} \phi \approx(1+i \alpha) \phi \Rightarrow \Delta \phi & =i \phi \\
\phi^{*} \rightarrow \phi^{\prime *}=e^{-i \alpha} \phi^{*} \approx(1-i \alpha) \phi^{*} \Rightarrow \Delta \phi^{*} & =-i \phi^{*} \tag{1.6}
\end{align*}
$$

We showed in class that the conserved Noether current associated with a symmetry is specified by

$$
\begin{align*}
j^{\mu} & =\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \Delta \phi+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi^{*}\right)} \Delta \phi^{*} \\
& =\left(i \phi \partial^{\mu} \phi^{*}-i \phi^{*} \partial^{\mu} \phi\right) \\
& =i\left(\phi \partial^{\mu} \phi^{*}-\phi^{*} \partial^{\mu} \phi\right) \tag{1.7}
\end{align*}
$$

2. a) The Lagrangian for a source-free electromagnetic field is specified by

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \quad \text { where } \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \tag{2.1}
\end{equation*}
$$

It is clear that $F_{\mu \nu}$ is antisymmetric, $F_{\mu \nu}=-F_{\nu \mu}$. From our knowledge of the metric tensor in Minkowski space, it is also clear that $F_{\mu \nu}=-F^{\mu \nu}$ if either μ or ν is zero and $F_{\mu \nu}=F^{\mu \nu}$ if both μ and ν are nonzero. Because the field strength tensor is antisymmetric, our calculation will be much easier.

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{2}\left(F_{01} F^{01}+F_{02} F^{02}+F_{03} F^{03}+F_{12} F^{12}+F_{13} F^{13}+F_{23} F^{23}\right), \\
= & \frac{1}{2}\left(F_{01}^{2}+F_{02}^{2}+F_{03}^{2}-F_{12}^{2}-F_{13}^{2}-F_{23}^{2}\right), \\
= & \frac{1}{2}\left[\left(\partial_{0} A_{1}-\partial_{1} A_{0}\right)^{2}+\left(\partial_{0} A_{2}-\partial_{2} A_{0}\right)^{2}+\left(\partial_{0} A_{3}-\partial_{3} A_{0}\right)^{2}\right. \\
& \left.-\left(\partial_{1} A_{2}-\partial_{2} A_{1}\right)^{2}-\left(\partial_{1} A_{3}-\partial_{3} A_{1}\right)^{2}-\left(\partial_{2} A_{3}-\partial_{3} A_{2}\right)^{2}\right] \\
= & \frac{1}{2}\left(\mathbf{E}^{2}-\mathbf{B}^{2}\right) .
\end{aligned}
$$

Now, let us try to find the Euler-Lagrange equations for motion for this field. Note that from our work above if it clear that,

$$
\frac{\partial \mathcal{L}}{\partial A_{\nu}}=0 .
$$

After a short while of staring at the above equations, you should see that

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} A_{\nu}\right)} & =\left\{\begin{array}{rr}
\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right) & \text { if } \mu=0 \text { or } \nu=0, \\
-\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right) & \text { if } \mu, \nu \neq 0
\end{array}\right. \\
& =-F^{\mu \nu}=F^{\nu \mu}
\end{aligned}
$$

So the equations of motion are simply

$$
\begin{equation*}
\partial_{\mu} F^{\nu \mu}=0 . \tag{2.2}
\end{equation*}
$$

Knowing that $E^{i}=-F^{0 i}$ and $\epsilon^{i j k} B^{k}=F^{j i}$, we can rewrite (2.2) as

$$
\begin{gather*}
\partial_{\mu} F^{0 \mu}=\partial_{i} F^{0 i}=0=-\partial_{1} E^{1}-\partial_{2} E^{2}-\partial_{3} E^{3}=0 \\
\therefore \nabla \cdot \mathbf{E}=0 \tag{2.3}
\end{gather*}
$$

The other equations also can be reduced to familiarity. Specifically,

$$
\begin{align*}
\partial_{\mu} F^{\nu \mu} & =\partial_{\mu} F^{k \mu}=0, \\
\Longrightarrow \partial_{0} F^{k 0} & =\partial_{i} F^{k i}=\epsilon^{i j k} \partial_{i} B_{j}, \\
\therefore \nabla \times \mathbf{B} & =\partial_{0} \mathbf{E} . \tag{2.4}
\end{align*}
$$

These two equations represent half of Maxwell's equations for a source-free field. The other two equations relate the vector potential A_{ν} with the \mathbf{E} and \mathbf{B} fields. These two other equations were 'given.' We needed to know that $\mathbf{B}=\nabla \times \mathbf{A}$ and $\mathbf{E}=-\partial_{0} \mathbf{A}-\nabla A_{0}$ to write down the components of \mathbf{E} and \mathbf{B} in terms of $F_{\mu \nu}$.
b) We construct the energy-momentum tensor, $T^{\mu \nu}$, (using the equation derived in my unpublished QFT notes),

$$
\begin{equation*}
T_{\nu}^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} A_{\lambda}\right)} \partial_{\nu} A_{\lambda}-\mathcal{L} \delta^{\mu}{ }_{\nu} \tag{2.5}
\end{equation*}
$$

It should be clear that by simply applying our results of part (a)

$$
T^{\mu \nu}=F^{\lambda \mu} \partial^{\nu} A_{\lambda}-\mathcal{L} \delta_{\nu}^{\mu}
$$

This is not symmetric in μ and ν. Remember that the important aspect of $T^{\mu \nu}$ is that it is conserved, i.e. $\partial_{\mu} T^{\mu \nu}=0$. To make $T^{\mu \nu}$ easier to work with, consider changing it to

$$
\hat{T}^{\mu \nu}=T^{\mu \nu}+\partial_{\lambda} K^{\lambda \mu \nu}
$$

Where $K^{\lambda \mu \nu}$ is antisymmetric in its first two indices. By this antisymmetry, it is clear that

$$
\partial_{\mu} \hat{T}^{\mu \nu}=\partial_{\mu} T^{\mu \nu}+\partial_{\mu} \partial_{\lambda} K^{\lambda \mu \nu}=0
$$

So $\hat{T}^{\mu \nu}$ is a conserved quantity for any $K^{\lambda \mu \nu}$ that is antisymmetric in its first two indices. Let $K^{\lambda \mu \nu}=F^{\mu \lambda} A^{\nu}$ which is certainly antisymmetric in λ and μ because of $F^{\mu \lambda}$. This allows us to rewrite $\hat{T}^{\mu \nu}$ in a much simpler form. (Note the use of the Euler-Lagrange equations to simplify line 2 below).

$$
\begin{aligned}
\hat{T}^{\mu \nu} & =T^{\mu \nu}+\partial_{\lambda} F^{\mu \lambda} A^{\nu} \\
& =T^{\mu \nu}+A^{\nu}\left(\partial_{\lambda} F^{\mu \lambda}\right)+F^{\mu \lambda}\left(\partial_{\lambda} A^{\nu}\right) \\
& =T^{\mu \nu}+F^{\mu \lambda}\left(\partial_{\lambda} A^{\nu}\right), \\
& =F^{\lambda \mu} \partial^{\nu} A_{\lambda}+F^{\mu \lambda} \partial_{\lambda} A^{\nu}-\mathcal{L} \delta^{\mu}{ }_{\nu} \\
& =F^{\lambda \mu}\left(\partial^{\nu} A_{\lambda}-\partial_{\lambda} A^{\nu}\right)-\mathcal{L} \delta^{\mu}{ }_{\nu} .
\end{aligned}
$$

It should be clear that $\hat{T}^{\mu \nu}=\hat{T}^{\nu \mu}$. Now we are ready to derive the Hamiltonian and total momentum from $\hat{T}^{\mu \nu}$. First, the Hamiltonian is

$$
\begin{align*}
\mathcal{H}=\mathcal{E} & =\hat{T}^{00} \\
& =E^{i}\left(\partial_{i} A^{0}-\partial^{0} A_{i}\right)-\mathcal{L} \\
& =\mathbf{E}^{2}-E^{i} \partial^{0} A_{i}-\frac{1}{2}\left(\mathbf{E}^{2}-\mathbf{B}^{2}\right), \\
& =\frac{1}{2}\left(\mathbf{E}^{2}+\mathbf{B}^{2}\right) \tag{2.6}
\end{align*}
$$

Note that in the last line of the derivation we had to set $E^{i} \partial^{0} A_{i}=0$. The total momentum of the field is

$$
\begin{align*}
S^{k}=T^{0 k} & =-E^{i}\left(\partial^{i} A^{k}-\partial^{k} A^{i}\right) \\
& =E_{i}\left(\partial^{i} A^{k}-\partial^{k} A^{i}\right) \\
& =E_{i} \epsilon^{i j k} B_{k} \\
\therefore \mathbf{S} & =\mathbf{E} \times \mathbf{B} \tag{2.7}
\end{align*}
$$

3. a) The inner product, (f, g), will be defined

$$
(f, g) \equiv i \int d^{3} x f^{*}(x) \partial_{0} g(x)-g(x) \partial_{0} f^{*}(x)
$$

We show that (f, g) is independent of time. This is demonstrated by direct computation.

$$
\begin{aligned}
\partial_{0}(f, g) & =i \int d^{3} x \partial_{0}\left[f^{*}(x) \partial_{0} g(x)-g(x) \partial_{0} f^{*}(x)\right] \\
& =i \int d^{3} x\left[\partial_{0} f^{*}(x) \partial_{0} g(x)+f^{*}(x) \partial_{0}^{2} g(x)-g(x) \partial_{0}^{2} f^{*}(x)-\partial_{0} f^{*}(x) \partial_{0} g(x)\right] \\
& =i \int d^{3} x\left[f^{*}(x) \partial_{0}^{2} g(x)-g(x) \partial_{0}^{2} f^{*}(x)\right]
\end{aligned}
$$

Using the Klein-Gordon equation, this reduces to

$$
\begin{aligned}
\partial_{0}(f, g) & =i \int d^{3} x f^{*}\left(\nabla^{2}-m^{2}\right) g-g\left(\nabla^{2}-m^{2}\right) f^{*} \\
& =i \int d^{3} x f^{*} \nabla^{2} g-g \nabla f^{*}
\end{aligned}
$$

We use Green's Theorem to reduce the equation above to

$$
\begin{equation*}
\partial_{0}(f, g)=i \int_{S}\left(f^{*} \nabla g-g \nabla f^{*}\right) \vec{n} \cdot d a=0 \tag{3.1}
\end{equation*}
$$

The integral vanishes because we may assume that the fields go to zero at infinity.
b) Recall that the inverse Fourier transform of a Fourier transform of a function is the function itself.

$$
f(k)=\int d^{3} x\left[e^{i k x} \int \frac{d^{3} k}{(2 \pi)^{3}} e^{-i k x} f(k)\right] .
$$

Note that when we will express $\phi(x)$ in terms of ladder operators below, ϕ will be a function of the 4 -vectors k and x. There is a minus sign to keep track of that is different from the book's 3 -vector representation.

$$
\phi(x)=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{a}{\sqrt{2 E_{k}}}\left(a_{k} e^{-i k x}+a_{k}^{\dagger} e^{i k x}\right) .
$$

We are now ready to derive the required identity. It will proceed by direct calculation.

$$
\begin{align*}
a_{k}=\left(f_{k}(x), \phi(x)\right)= & i \int d^{3} x\left(f^{*} \partial_{0} \phi-\phi \partial_{0} f^{*}\right) \\
= & i \int d^{3} x\left[e^{i k x} \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{2 E_{k}}\left(-i E_{k} a_{k} e^{-i k x}+i E_{k} a_{k}^{\dagger} e^{i k x}\right)\right. \\
& \left.\quad-e^{i k x} \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{i E_{k}}{2 E_{k}}\left(a_{k} e^{-i k x}+a_{k}^{\dagger} e^{i k x}\right)\right] \\
= & \int d^{3} x e^{i k x}\left[\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{2}\left(a_{k} e^{-i k x}-a_{k}^{\dagger} e^{i k x}+a_{k} e^{-i k x}+a_{k}^{\dagger} e^{i k x}\right)\right], \\
= & \int d^{3} x e^{i k x} \int \frac{d^{3} k}{(2 \pi)^{3}} e^{-i k x} a_{k}=a_{k} \\
& \therefore a_{k}=\left(f_{k}(x), \phi(x)\right)=a_{k} . \tag{3.2}
\end{align*}
$$

c) Let us derive the the commutation relation $\left[a_{\mathbf{p}}, a_{\mathbf{p}^{\prime}}^{\dagger}\right]=(2 \pi)^{3} \delta^{(3)}\left(\mathbf{p}-\mathbf{p}^{\prime}\right)$. To find this commutation relation, we will first consider the fields in terms of ladder operators.

$$
\begin{aligned}
& \phi(\mathbf{x})=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega_{\mathbf{p}}}}\left(a_{\mathbf{p}}+a_{-\mathbf{p}}^{\dagger}\right) e^{i \mathbf{p} \cdot \mathbf{x}} ; \\
& \pi(\mathbf{y})=\int \frac{d^{3} p^{\prime}}{(2 \pi)^{3}}(-i) \sqrt{\frac{\omega_{\mathbf{p}^{\prime}}}{2}}\left(a_{\mathbf{p}^{\prime}}-a_{-\mathbf{p}^{\prime}}^{\dagger}\right) e^{i \mathbf{p}^{\prime} \cdot \mathbf{y}} .
\end{aligned}
$$

Note that because the p's are dummy variables, we cannot assume they are the same when we "mix" the integration, so we have called one \mathbf{p} '.

$$
\begin{align*}
& {[\phi(\mathbf{x}), \pi(\mathbf{y})]=i \delta^{(3)}(\mathbf{x}-\mathbf{y})} \\
& =\int \frac{d^{3} p d^{3} p^{\prime}}{(2 \pi)^{6}} \sqrt{\frac{\omega_{\mathbf{p}^{\prime}}}{\omega_{\mathbf{p}}}} \frac{-i}{2}\left(a_{\mathbf{p}} a_{\mathbf{p}^{\prime}}-a_{\mathbf{p}} a_{-\mathbf{p}^{\prime}}^{\dagger}+a_{-\mathbf{p}}^{\dagger} a_{\mathbf{p}^{\prime}}-a_{-\mathbf{p}}^{\dagger} a_{-\mathbf{p}^{\prime}}^{\dagger}-a_{\mathbf{p}^{\prime}} a_{\mathbf{p}}-a_{\mathbf{p}^{\prime}} a_{-\mathbf{p}}^{\dagger}+a_{-\mathbf{p}^{\prime}}^{\dagger} a_{\mathbf{p}}+a_{-\mathbf{p}^{\prime}}^{\dagger} a_{-\mathbf{p}}^{\dagger}\right) e^{i\left(\mathbf{p} \cdot \mathbf{x}+\mathbf{p}^{\prime} \cdot \mathbf{y}\right)} \\
& =\int \frac{d^{3} p d^{3} p^{\prime}}{(2 \pi)^{6}} \sqrt{\frac{\omega_{\mathbf{p}^{\prime}}}{\omega_{\mathbf{p}}}} \frac{i}{2}\left(a_{\mathbf{p}} a_{-\mathbf{p}^{\prime}}^{\dagger}-a_{-\mathbf{p}^{\prime}}^{\dagger} a_{\mathbf{p}}+a_{\mathbf{p}^{\prime}} a_{-\mathbf{p}}^{\dagger}-a_{-\mathbf{p}}^{\dagger} a_{\mathbf{p}^{\prime}}\right) e^{i\left(\mathbf{p} \cdot \mathbf{x}+\mathbf{p}^{\prime} \cdot \mathbf{y}\right)}(\text { cancelling like terms by symmetry }) \\
& =\int \frac{d^{3} p d^{3} p^{\prime}}{(2 \pi)^{6}} \sqrt{\frac{\omega_{\mathbf{p}^{\prime}}}{\omega_{\mathbf{p}}}} \frac{i}{2}\left(\left[a_{\mathbf{p}}, a_{-\mathbf{p}^{\prime}}^{\dagger}\right]+\left[a_{\mathbf{p}^{\prime}}, a_{-\mathbf{p}}^{\dagger}\right]\right) e^{i\left(\mathbf{p} \cdot \mathbf{x}+\mathbf{p}^{\prime} \cdot \mathbf{y}\right)} \quad\left(\text { note that }\left[a_{\mathbf{p}}, a_{-\mathbf{p}^{\prime}}^{\dagger}\right]=\left[a_{\mathbf{p}^{\prime}}, a_{-\mathbf{p}}^{\dagger}\right]\right) \\
& =\int \frac{d^{3} p d^{3} p^{\prime}}{(2 \pi)^{6}} \sqrt{\frac{\omega_{\mathbf{p}^{\prime}}}{\omega_{\mathbf{p}}}} i\left[a_{\mathbf{p}}, a_{-\mathbf{p}^{\prime}}^{\dagger}\right] e^{i\left(\mathbf{p} \cdot \mathbf{x}+\mathbf{p}^{\prime} \cdot \mathbf{y}\right)}=i \delta^{(3)}(\mathbf{x}-\mathbf{y}) . \tag{3.3}
\end{align*}
$$

Note that by the properties of the Dirac δ functional,

$$
\int \frac{d^{3} p d^{3} p^{\prime}}{(2 \pi)^{3}} i e^{i\left(\mathbf{p} \cdot \mathbf{x}+\mathbf{p}^{\prime} \cdot \mathbf{y}\right)}=i \delta^{(3)}(\mathbf{x}-\mathbf{y})
$$

Applying this knowledge to (3.3) from above, $\left[a_{\mathbf{p}}, a_{-\mathbf{p}^{\prime}}^{\dagger}\right]$ must satisfy

$$
\int \frac{d^{3} p d^{3} p^{\prime}}{(2 \pi)^{3}} \sqrt{\frac{\omega_{\mathbf{p}^{\prime}}}{\omega_{\mathbf{p}}}}\left[a_{\mathbf{p}}, a_{-\mathbf{p}^{\prime}}^{\dagger}\right]=1
$$

This is identically satisfied if and only if we have that

$$
\left[a_{\mathbf{p}}, a_{-\mathbf{p}^{\prime}}^{\dagger}\right]=(2 \pi)^{3} \delta^{(3)}\left(\mathbf{p}+\mathbf{p}^{\prime}\right)
$$

You can check this statement by noticing that this implies

$$
\int \frac{d^{3} p d^{3} p^{\prime}}{(2 \pi)^{3}} \sqrt{\frac{\omega_{\mathbf{p}^{\prime}}}{\omega_{\mathbf{p}}}}\left[a_{\mathbf{p}}, a_{-\mathbf{p}^{\prime}}^{\dagger}\right]=\sqrt{\frac{\omega_{\mathbf{p}}}{\omega_{\mathbf{p}}}}=1
$$

Therefore, noting our use of $-\mathbf{p}$, we may conclude that

$$
\begin{equation*}
\left[a_{\mathbf{p}}, a_{\mathbf{p}^{\prime}}^{\dagger}\right]=(2 \pi)^{3} \delta^{(3)}\left(\mathbf{p}-\mathbf{p}^{\prime}\right) \tag{3.4}
\end{equation*}
$$

