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Physics 513, Quantum Field Theory
Homework 2

Due Tuesday, 16th September 2003

Jacob Lewis Bourjaily

1. a) Studying classical field theory, we derived the Euler-Lagrange equations of motion,

∂L
∂φ

− ∂µ
∂L

∂(∂µφ)
= 0.

It is trivial to show that a field which is described by the Lagrangian given has the following
equation of motion:

−m2φ− ∂V

∂φ
− ∂µ∂µφ = 0,

=⇒ (
∂µ∂µ + m2

)
φ = −∂V

∂φ
. (1.1)

Which is precisely the Klein-Gordon equation for a field in a potential V .
b) The canonical momentum is,

π =
∂L

∂(∂0φ)
= ∂0φ. (1.2)

Using π, we write the Hamiltonian for the field.

H =
∫

d3xH =
∫

d3x (π∂0φ− L),

=
∫

d3x
(
π2 − 1/2(∂0φ)2 + 1/2(∇φ)2 + 1/2m2φ2 + V (φ)

)
,

=
1
2

∫
d3x

(
π2 + (∇φ)2 + m2φ2 + 2V (φ)

)
. (1.3)

c) With a complex scalar field, the Lagrangian becomes

L = ∂µφ∗∂µφ−m2φ∗φ− V (φ∗φ).

Following the same procedure as in part (a) above, we use the Euler-Lagrange equation to
show that

−m2φ∗φ− φ∗
∂V

∂φ
− φ

∂V

∂φ∗
− ∂µφ∗∂µφ = 0.

=⇒ (
∂µ∂µ + m2

)
φ∗φ = −φ∗

∂V

∂φ
− φ

∂V

∂φ∗
(1.4)

It is relatively easy to show that canonical momenta of the field are

π =
∂L

∂(∂0φ)
= ∂0φ

∗;

π∗ =
∂L

∂(∂0φ∗)
= ∂0φ.

Using this expression for π, we will proceed as above to compute the Hamiltonian.

H =
∫

d3xH =
∫

d3x (π∂0φ− L),

=
∫

d3x
(
π∗π − 1/2π∗π + 1/2∇φ∗∇φ + 1/2m2φ∗φ + V (φ∗φ)

)
,

=
1
2

∫
d3x

(
π∗π +∇φ∗∇φ + m2φ∗φ + 2V (φ∗φ)

)
. (1.5)
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d) Let us derive the Noether current generated by a global phase rotation φ → φ′ = eiαφ. It
is clear that L′ = L because only modulus terms of φ appear in L. We rewrite the global
phase rotation to the first order as

φ → φ′ = eiαφ ≈ (1 + iα)φ ⇒ ∆φ = iφ;

φ∗ → φ′∗ = e−iαφ∗ ≈ (1− iα)φ∗ ⇒ ∆φ∗ = −iφ∗. (1.6)

We showed in class that the conserved Noether current associated with a symmetry is
specified by

jµ =
∂L

∂(∂µφ)
∆φ +

∂L
∂(∂µφ∗)

∆φ∗,

= (iφ∂µφ∗ − iφ∗∂µφ) ,

= i (φ∂µφ∗ − φ∗∂µφ) . (1.7)

2. a) The Lagrangian for a source-free electromagnetic field is specified by

L = −1
4
FµνFµν where Fµν = ∂µAν − ∂νAµ. (2.1)

It is clear that Fµν is antisymmetric, Fµν = −Fνµ. From our knowledge of the metric
tensor in Minkowski space, it is also clear that Fµν = −Fµν if either µ or ν is zero and
Fµν = Fµν if both µ and ν are nonzero. Because the field strength tensor is antisymmetric,
our calculation will be much easier.

L = −1
2

(
F01F

01 + F02F
02 + F03F

03 + F12F
12 + F13F

13 + F23F
23

)
,

=
1
2

(
F 2

01 + F 2
02 + F 2

03 − F 2
12 − F 2

13 − F 2
23

)
,

=
1
2
[(∂0A1 − ∂1A0)2 + (∂0A2 − ∂2A0)2 + (∂0A3 − ∂3A0)2

− (∂1A2 − ∂2A1)2 − (∂1A3 − ∂3A1)2 − (∂2A3 − ∂3A2)2],

=
1
2

(
E2 −B2

)
.

Now, let us try to find the Euler-Lagrange equations for motion for this field. Note that
from our work above if it clear that,

∂L
∂Aν

= 0.

After a short while of staring at the above equations, you should see that
∂L

∂(∂µAν)
=

{
(∂µAν − ∂νAµ) if µ = 0 or ν = 0,
−(∂µAν − ∂νAµ) if µ, ν 6= 0,

= −Fµν = F νµ.

So the equations of motion are simply

∂µF νµ = 0. (2.2)

Knowing that Ei = −F 0i and εijkBk = F ji, we can rewrite (2.2) as

∂µF 0µ = ∂iF
0i = 0 = −∂1E

1 − ∂2E
2 − ∂3E

3 = 0,

∴ ∇ ·E = 0. (2.3)
The other equations also can be reduced to familiarity. Specifically,

∂µF νµ = ∂µF kµ = 0,

=⇒ ∂0F
k0 = ∂iF

ki = εijk∂iBj ,

∴ ∇×B = ∂0E. (2.4)

These two equations represent half of Maxwell’s equations for a source-free field. The other
two equations relate the vector potential Aν with the E and B fields. These two other
equations were ‘given.’ We needed to know that B = ∇×A and E = −∂0A−∇A0 to write
down the components of E and B in terms of Fµν .
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b) We construct the energy-momentum tensor, Tµν , (using the equation derived in my unpub-
lished QFT notes),

Tµν =
∂L

∂(∂µAλ)
∂νAλ − Lδµν , (2.5)

It should be clear that by simply applying our results of part (a)

Tµν = Fλµ∂νAλ − Lδµν .
This is not symmetric in µ and ν. Remember that the important aspect of Tµν is that it is
conserved, i.e. ∂µTµν = 0. To make Tµν easier to work with, consider changing it to

T̂µν = Tµν + ∂λK
λµν .

Where Kλµν is antisymmetric in its first two indices. By this antisymmetry, it is clear that

∂µT̂
µν = ∂µT

µν + ∂µ∂λK
λµν = 0.

So T̂µν is a conserved quantity for any Kλµν that is antisymmetric in its first two indices.
Let Kλµν = FµλAν which is certainly antisymmetric in λ and µ because of Fµλ. This
allows us to rewrite T̂µν in a much simpler form. (Note the use of the Euler-Lagrange
equations to simplify line 2 below).

T̂µν = Tµν + ∂λF
µλAν ,

= Tµν +Aν(∂λFµλ) + Fµλ(∂λAν),

= Tµν + Fµλ(∂λAν),

= Fλµ∂νAλ + Fµλ∂λA
ν − Lδµν ,

= Fλµ(∂νAλ − ∂λAν)− Lδµν .

It should be clear that T̂µν = T̂ νµ. Now we are ready to derive the Hamiltonian and total
momentum from T̂µν . First, the Hamiltonian is

H = E = T̂ 00,

= Ei(∂iA0 − ∂0Ai)− L,

= E2 − Ei∂0Ai −
1
2

(E2 −B2),

=
1
2

(E2 + B2).

(2.6)

Note that in the last line of the derivation we had to set Ei∂0Ai = 0. The total momentum
of the field is

Sk = T 0k = −Ei(∂iAk − ∂kAi),

= Ei(∂iAk − ∂kAi),

= Eiε
ijkBk,

∴ S = E×B. (2.7)
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3. a) The inner product, (f,g), will be defined

(f, g) ≡ i

∫
d3xf∗(x)∂0g(x)− g(x)∂0f

∗(x),

We show that (f, g) is independent of time. This is demonstrated by direct computation.

∂0(f, g) = i

∫
d3x∂0 [f∗(x)∂0g(x)− g(x)∂0f

∗(x)],

= i

∫
d3x

[
∂0f

∗(x)∂0g(x) + f∗(x)∂2
0g(x)− g(x)∂2

0f∗(x)− ∂0f
∗(x)∂0g(x)

]
,

= i

∫
d3x

[
f∗(x)∂2

0g(x)− g(x)∂2
0f∗(x)

]
.

Using the Klein-Gordon equation, this reduces to

∂0(f, g) = i

∫
d3xf∗(∇2 −m2)g − g(∇2 −m2)f∗,

= i

∫
d3xf∗∇2g − g∇f∗.

We use Green’s Theorem to reduce the equation above to

∂0(f, g) = i

∫

S

(f∗∇g − g∇f∗)~n · da = 0. (3.1)

The integral vanishes because we may assume that the fields go to zero at infinity.

b) Recall that the inverse Fourier transform of a Fourier transform of a function is the function
itself.

f(k) =
∫

d3x

[
eikx

∫
d3k

(2π)3
e−ikxf(k)

]
.

Note that when we will express φ(x) in terms of ladder operators below, φ will be a function
of the 4-vectors k and x. There is a minus sign to keep track of that is different from the
book’s 3-vector representation.

φ(x) =
∫

d3k

(2π)3
a√
2Ek

(
ake−ikx + a†keikx

)
.

We are now ready to derive the required identity. It will proceed by direct calculation.

ak = (fk(x), φ(x)) = i

∫
d3x(f∗∂0φ− φ∂0f

∗),

= i

∫
d3x

[
eikx

∫
d3k

(2π)3
1

2Ek

(
−iEkake−ikx + iEka†keikx

)

−eikx

∫
d3k

(2π)3
iEk

2Ek

(
ake−ikx + a†keikx

)]
,

=
∫

d3xeikx

[∫
d3k

(2π)3
1
2

(
ake−ikx − a†keikx + ake−ikx + a†keikx

)]
,

=
∫

d3xeikx

∫
d3k

(2π)3
e−ikxak = ak,

∴ ak = (fk(x), φ(x)) = ak. (3.2)
‘óπερ ’έδει δεÄιξαι
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c) Let us derive the the commutation relation
[
ap, a†p′

]
= (2π)3δ(3)(p − p′). To find this

commutation relation, we will first consider the fields in terms of ladder operators.

φ(x) =
∫

d3p

(2π)3
1√
2ωp

(ap + a†−p)eip·x;

π(y) =
∫

d3p′

(2π)3
(−i)

√
ωp′

2
(ap′ − a†−p′)e

ip′·y.

Note that because the p’s are dummy variables, we cannot assume they are the same when
we “mix” the integration, so we have called one p’.

[φ(x), π(y)] = iδ(3)(x− y)

=
∫

d3pd3p′

(2π)6

√
ωp′

ωp

−i

2

(
apap′ − apa†−p′ + a†−pap′ − a†−pa†−p′ − ap′ap − ap′a

†
−p + a†−p′ap + a†−p′a

†
−p

)
ei(p·x+p′·y)

=
∫

d3pd3p′

(2π)6

√
ωp′

ωp

i

2

(
apa†−p′ − a†−p′ap + ap′a

†
−p − a†−pap′

)
ei(p·x+p′·y)(cancelling like terms by symmetry)

=
∫

d3pd3p′

(2π)6

√
ωp′

ωp

i

2

([
ap, a†−p′

]
+

[
ap′ , a

†
−p

])
ei(p·x+p′·y)

(
note that

[
ap, a†−p′

]
=

[
ap′ , a

†
−p

])

=
∫

d3pd3p′

(2π)6

√
ωp′

ωp
i
[
ap, a†−p′

]
ei(p·x+p′·y) = iδ(3)(x− y). (3.3)

Note that by the properties of the Dirac δ functional,∫
d3pd3p′

(2π)3
iei(p·x+p′·y) = iδ(3)(x− y).

Applying this knowledge to (3.3) from above,
[
ap, a†−p′

]
must satisfy

∫
d3pd3p′

(2π)3

√
ωp′

ωp
[ap, a†−p′ ] = 1.

This is identically satisfied if and only if we have that[
ap, a†−p′

]
= (2π)3δ(3)(p + p′).

You can check this statement by noticing that this implies∫
d3pd3p′

(2π)3

√
ωp′

ωp

[
ap, a†−p′

]
=

√
ωp

ωp
= 1.

Therefore, noting our use of −p, we may conclude that
[
ap, a†p′

]
= (2π)3δ(3)(p− p′) (3.4)

‘óπερ ’έδει δεÄιξαι




